ICLR2022cosFormer:重新思考注意力机制中的Softmax
导读:Transformer在自然语言处理、计算机视觉和音频处理方面取得了巨大成功。作为其核心组成部分之一,Softmax Attention模块能够捕捉长距离的依赖关系,但由于Softmax算子关于序列长度的二次空间和时间复杂性,使其很难扩展。针对这点,研究者提出利用核方法以及稀疏注意力机制的方法
导读:Transformer在自然语言处理、计算机视觉和音频处理方面取得了巨大成功。作为其核心组成部分之一,Softmax Attention模块能够捕捉长距离的依赖关系,但由于Softmax算子关于序列长度的二次空间和时间复杂性,使其很难扩展。针对这点,研究者提出利用核方法以及稀疏注意力机制的方法
几个小时前,著名 AI 研究者、OpenAI 创始成员之一 Andrej Karpathy 发布了一篇备受关注的长推文,其中分享了注意力机制背后一些或许少有人知的故事。
来自清华大学的研究者提出了一种新的注意力范式——代理注意力 (Agent Attention)。近年来,视觉 Transformer 模型得到了极大的发展,相关工作在分类、分割、检测等视觉任务上都取得了很好的效果。然而,将 Transformer 模型应用于视觉领域并不是一件简单的事情。
转载:Bestsong简介(1)Pyramid Split Attention Block用于增强特征提取(2)即插即用,可将Pyramid Split Attention Block取代ResNet的3×3卷积,提出基准网络ESPANet(3)目标分类与目标检测任务达到state-of-the-a
CPU+GPU,模型KV缓存压力被缓解了。来自CMU、华盛顿大学、Meta AI的研究人员提出MagicPIG,通过在CPU上使用LSH(局部敏感哈希)采样技术,有效克服了GPU内存容量限制的问题。与仅使用GPU的注意力机制相比,MagicPIG在各种情况下提高了1.76~4.99倍的解码吞吐量,并
谷歌大改Transformer,“无限”长度上下文来了。现在,1B大模型上下文长度可扩展到1M(100万token,大约相当于10部小说),并能完成Passkey检索任务。
只有一层或两层、且只有注意力块的transformer,在性能上有望达到96层、兼具注意力块与MLP块的GPT-3的效果吗?作者 | Mordechai Rorvig编译 | bluemin编辑 | 陈彩娴在过去的两年里,基于Transformer架构开发的大规模语言模型在性能(如语言流畅度)上达到
财联社1月6日讯(编辑 周子意)OpenAI首席执行官Sam Altman在1月6日的最新个人博客中写道,OpenAI将有信心构建通用人工智能(AGI),并且公司已经开始将目标转向“超级智能(superintelligence)”。奥尔特曼还指出,“我们热爱现在的产品,但我们在这里是为了辉煌的未来。
改进Transformer核心机制注意力,让小模型能打两倍大的模型!ICML 2024高分论文,彩云科技团队构建DCFormer框架,替换Transformer核心组件多头注意力模块(MHA),提出可动态组合的多头注意力(DCMHA)。DCMHA解除了MHA注意力头的查找选择回路和变换回路的固定绑定
机器之心报道编辑:陈PyTorch实现各种注意力机制。注意力(Attention)机制最早在计算机视觉中应用,后来又在 NLP 领域发扬光大,该机制将有限的注意力集中在重点信息上,从而节省资源,快速获得最有效的信息。2014 年,Google DeepMind 发表《Recurrent Models