
LearningtoLearnwithQuantumOptimizationviaQuantumNeuralNetworks
Quantum Approximate Optimization Algorithms (QAOA) promise efficient solutions to classically intractable combinatorial optimization problems by harnessing shallow-depth quantum circuits. Yet, their performance and scalability often hinge on effective parameter optimization, which remains nontrivial due to rugged energy landscapes and hardware noise. In this work, we introduce a quantum meta-learning framework that combines quantum neural networks, specifically Quantum Long Short-Term Memory (QLSTM) architectures, with QAOA. By training the QLSTM optimizer on smaller graph instances, our approach rapidly generalizes to larger, more complex problems, substantially reducing the number of iterations required for convergence. Through comprehensive benchmarks on Max-Cut and Sherrington-Kirkpatrick model instances, we demonstrate that QLSTM-based optimizers converge faster and achieve higher approximation ratios compared to classical baselines, thereby offering a robust pathway toward scalable quantum optimization in the NISQ era.
相关推荐
热门文章
